A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence.

نویسندگان

  • Victor J Torres
  • Devin L Stauff
  • Gleb Pishchany
  • Jelena S Bezbradica
  • Laura E Gordy
  • Juan Iturregui
  • Kelsi L Anderson
  • Paul M Dunman
  • Sebastian Joyce
  • Eric P Skaar
چکیده

Staphylococcus aureus, a bacterium responsible for tremendous morbidity and mortality, exists as a harmless commensal in approximately 25% of humans. Identifying the molecular machinery activated upon infection is central to understanding staphylococcal pathogenesis. We describe the heme sensor system (HssRS) that responds to heme exposure and activates expression of the heme-regulated transporter (HrtAB). Inactivation of the Hss or Hrt systems leads to increased virulence in a vertebrate infection model, a phenotype that is associated with an inhibited innate immune response. We suggest that the coordinated activity of Hss and Hrt allows S. aureus to sense internal host tissues, resulting in tempered virulence to avoid excessive host tissue damage. Further, genomic analyses have identified orthologous Hss and Hrt systems in Bacillus anthracis, Listeria monocytogenes, and Enterococcus faecalis, suggesting a conserved regulatory system by which Gram-positive pathogens sense heme as a molecular marker of internal host tissue and modulate virulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of agr Gene Expression with Staphylococcus Aureus Virulence Genes in BHI Broth

Abstract       Background and Objective: Agr is the most important regulatory system for the expression of Staphylococcus aureus virulence factors in different conditions. Agr acts as a quorum sensing system in this bacterium which is activated by increased cell concentration during the transition from logarithmic growth phase to stationary phase. Its role is to up...

متن کامل

Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence

Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated i...

متن کامل

Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis

Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also to...

متن کامل

Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization.

The pathogenesis of human infections caused by the gram-positive microbe Staphylococcus aureus has been previously shown to be reliant on the acquisition of iron from host hemoproteins. The iron-regulated surface determinant system (Isd) encodes a heme transport apparatus containing three cell wall-anchored proteins (IsdA, IsdB, and IsdH) that are exposed on the staphylococcal surface and hence...

متن کامل

The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence

The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K(+)) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell host & microbe

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2007